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Abstract
We argue that key characteristics of the enigmatic transition at T0 = 17.5 K
in URu2Si2 indicate that the hidden order is a density wave formed within
a band of composite quasiparticles, whose detailed structure is determined
by local physics. We expand on our proposal (with Mydosh) of the hidden
order as incommensurate orbital antiferromagnetism and present experimental
predictions to test our ideas. We then turn towards a microscopic description
of orbital antiferromagnetism, exploring possible particle–hole pairings within
the context of a simple one-band model. We end with a discussion of recent
high-field and thermal transport experiments, and discuss their implications for
the nature of the hidden order.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The possibility of exotic particle–hole pairing leading to quadrupolar and orbital charge currents
has been discussed extensively in the context of the two-dimensional Hubbard model [1–5].
More recently d-wave charge-density wave states, both ordered [6] and fluctuating [7], have
been proposed to explain the pseudogap phase in the underdoped cuprates and ground-states
of doped two-leg Hubbard and t–J ladders [8, 9]. In this paper we discuss related anisotropic
particle–hole pairing in a different setting, namely that of three-dimensional Fermi liquids. We
believe that such pairing may occur in the heavy fermion metal URu2Si2, and here we provide
theoretical support for our earlier publications (with Mydosh) on this topic [10–13]. Though
the initial motivation for our orbital antiferromagnetism (OAFM) proposal in URu2Si2 was
primarily experimental, here we observe that coexistence of large electron–electron repulsion
and antiferromagnetic fluctuations favours node formation in particle–hole pairing and hence
the formation of anisotropic charge-density wave states. After presenting technical details
behind specific predictions for neutron scattering and for NMR, we turn towards a microscopic
description of orbital antiferromagnetism. We start by presenting the generalized Landau
parameters associated with this anisotropic pairing. Next we study a toy model where this
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Figure 1. (a) Schematics of the specific heat anomaly. The data points are taken from figure 1
of [14]. (b) The measured magnetic susceptibility, from [16]. Inset showing crossover from
high-temperature local Curie behaviour to low-temperature Fermi liquid behaviour, taken from
figure 2 of [14].

instability occurs. We end with a discussion of these results in the light of more recent
measurements, and also suggest further experiments to test our ideas.

The heavy fermion metal URu2Si2 displays a classic second-order phase transition (see
figure 1) at T0 = 17.5 K, and yet the nature of the associated order parameter remains elusive
nearly two decades after its discovery. This phase transition is characterized by a large entropy
loss [14] and sharp anomalies in the linear [14] and the nonlinear susceptibilities [15, 16],
the thermal expansion [17], and the resistivity [18], where standard mean-field relations
between measured thermodynamic quantities are satisfied [19]. At the transition, neutron
scattering experiments observe gapped, propagating magnetic excitations [20–23] that
suggest the formation of a spin-density wave. However, subsequent neutron scattering
measurements [22, 23] indicate that the staggered magnetic moment (m0 = 0.03 µB per
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U atom) is too small to account for the entropy loss at the transition [24], which has been
attributed to the development of an enigmatic hidden order.

There is strong experimental evidence that the antiferromagnetism and the hidden
order in URu2Si2 are phase separated, and thus develop independently [13]. High-field
measurements [25–27] indicate that the bulk anomalies survive up to 40 T, while the staggered
moment is destroyed [28] by comparatively modest fields of 15 T. Furthermore, the staggered
magnetic moment grows linearly with pressure [29] while bulk anomalies associated with the
hidden order remain relatively pressure independent [30]. Phase separation is also indicated
by muon spin resonance (µSR) experiments [31, 32]. The most direct evidence has come from
recent NMR pressure-dependent measurements (see figure 2) [33]: for T < T0 the existence
of distinct antiferromagnetic and paramagnetic (hidden order) phases is clearly observed in
samples with less than 10% of the volume magnetic (mspin ≈ 0.3 µB) at ambient pressure.
The observed increase of the staggered magnetic moment with pressure [29] is then simply a
volume-fraction effect [33]. The magnetic order develops independently from the hidden order
through a first-order transition [10], and the associated temperature–pressure phase diagram
has been determined using thermal expansion measurements [34].

The mysterious phase transition at T0 has features that have both local and itinerant
electronic natures, and these coexisting dual characteristics make its description quite
challenging. For example, the development of a sharp propagating mode just below T0

observed by inelastic neutron scattering [20–22] emphasizes the importance of local crystal-
field excitations at the transition. Nevertheless a purely local picture cannot provide a
straightforward explanation for the observed elastic anomalies [35] near T0 that are distinct
from those of typical uniaxial antiferromagnets [36] both due to their (weak) magnitudes and
due to the absence of precursor effects for T > T0.

The sharp mean-field nature of the phase transition at T0, together with the magnitude
of the condensation entropy and the observed development of gap in the excitation
spectrum all suggest the development of density-wave order within a fluid of itinerant
quasiparticles [11, 16, 19, 37]. Itinerancy is implicated by the sharpness of the transition
while gap formation and the large entropy of condensation speak in favour of an order
parameter at a finite wavevector. However, a dissenting view on this last point, involving
p-wave ferromagnetism, has recently been proposed [38]. We note that within the itinerant
perspective presented here, there are problems matching details of the excitation spectra
as observed in inelastic neutron scattering experiments [23]. On the other hand, a purely
local scenario [23, 39] (with anticipated corrections for itinerant fermions) simply cannot
be reconciled with the almost complete quenching of the local moments, implicated by the
paramagnetic (as opposed to Curie-like) susceptibility (see the inset in figure 1(b)) and the large
linear specific capacity, normally associated with well-formed heavy electrons (figure 1(a)).
There are addition inconsistencies with a local picture: for example, the gap� used in the local
singlet scheme [23] to explain the dispersing magnetic mode has a different field dependence
from that of the bulk � associated with thermodynamic quantities [40]. A strict adherence
to a local scheme requires consideration of many additional crystal-field levels [40] evolving
differently in an applied field.

A proper theoretical description of the transition at T0 in URu2Si2 must therefore
encompass both local and itinerant features of the problem. More specifically, the observed
Fermi liquid properties for T > T0 (e.g. figure 1) combined with the large entropy loss and the
sharp nature of the transition indicate that the underlying quasiparticle excitations are itinerant,
presumably composite objects formed from the 5f spin and orbital degrees of freedom of the
U ions. Local physics (e.g. Kondo physics, spin–orbit coupling, crystal-field schemes) plays
a key role in their development.
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Figure 2. (a) Schematic of the pressure dependence of the ground-state staggered magnetic moment
(after [33]). (b) Satellite structure in NMR (after [41]), taken at 0.8 GPa, showing the coexistence
of an antiferromagnetic satellite with a central peak derived from the hidden order phase.

We have just outlined a number of general considerations that we believe are crucial
features of the hidden order in URu2Si2. Given these criteria, we (with Mydosh) have
proposed that it can be described by a general density wave whose form factor is constrained
by experimental observation and is ultimately determined by underlying local excitations [12].
We note that a number of proposals for the hidden order that fit into this general framework
have been made [19, 37, 38, 41–43]. We argue that the large entropy loss at the transition
can only be understood if the density wave involves the polarization of a significant fraction
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Figure 3. Temperature dependence of the NMR
linewidth λ(T ), measured in Gauss, showing the
development of a finite local magnetic fields at
T0; after [44].

of the quasiparticle band, a condition that discounts a conventional spin-density wave due to
the small size of the observed magnetic moment. Taking our cue from ambient-pressure
Si NMR measurements (see figure 3) that indicate broken time-reversal symmetry in the
hidden ordered phase [44], we (with Mydosh) have proposed that UR2Si2 becomes an
incommensurate orbital antiferromagnet at T = T0 with charge currents circulating between
the uranium ions [11]. Here the modulation wavevector is chosen to fit the observed isotropic
field distribution at the silicon sites. The resulting real-space fields can then be Fourier
transformed to calculate a neutron scattering structure factor with a ring of possible q-vectors.
Though these results have been presented elsewhere [11], in this paper (section 2) we provide
supporting technical details and further discussion. We also determine the NMR linewidths at
the Ru sites. Detailed comparison with recent experiment puts constraints on the allowed
incommensurate wavevectors, allowing us to make more specific predictions for neutron
scattering measurements.

In the second part of this paper, we turn towards an underlying microscopic picture
of orbital antiferromagnetism. More specifically, in section 3 we explore particle–hole
pairings in anisotropic incompressible Fermi liquids with specific application to URu2Si2.
Next (section 4) we introduce a simple t–J model with a single heavy band and weak
antiferromagnetic spin fluctuations (AFMSFs). We note that this particular Hamiltonian
was originally introduced [45] to describe the AFMSF-mediated transition in URu2Si2 at
1.2 K. We show that this same toy model also supports particle–hole pairings associated with
incommensurate orbital antiferromagnetism and quadrupolar charge-density wave formation.
We end (section 4) the paper with a summary, and then discuss our results in the context of
recent high-field and thermal transport measurements.

2. Phenomenology and experimental predictions

In this section we review the experimental motivation for incommensurate orbital
antiferromagnetism as the hidden order in URu2Si2. We develop the phenomenology of this
proposal, independent of microscopic details. The magnitude and the ordering wavevector of
the orbital currents are fitted [11] to the observed isotropic field distribution at the silicon sites
as measured by nuclear magnetic resonance (NMR) [44]. The real-space fields produced by
the orbital charge currents at all points in the sample volume are then determined, and we use
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this information to make specific predictions for neutron scattering structure factors and for
NMR at non-silicon sites to test this proposal.

2.1. Incommensurate orbital antiferromagnetism as the hidden order in URu2Si2

We begin our phenomenological discussion by reviewing the case for incommensurate orbital
antiferromagnetism as the hidden order in URu2Si2. There have been many proposals for the
primary order parameter in this material [37, 38, 41–43, 46], and until recently it was assumed
that the spin antiferromagnetism and the hidden order are coupled and homogenous. However,
pressure-dependent NMR measurements [33], supported by muon spin resonance [31, 32]
and thermal expansion [34] data, indicate that the hidden and the magnetic orders are phase
separated and thus are completely independent [13].

We believe that an important clue to the nature of the hidden order in URu2Si2 is
provided by Si NMR measurements at ambient pressure [44] that indicate that at T � T0

the paramagnetic (non-split) silicon NMR linewidth develops a field-independent, isotropic
component whose temperature-dependentmagnitude is proportional to that of the hidden order
parameter. These results imply an isotropic field distribution at the silicon sites whose root-
mean-square value is proportional to the hidden order (ψ)

〈Bα(i)Bβ( j)〉 = A2ψ2δαβ, (1)

and is ∼10 G at T = 0. This field magnitude is too small to be explained by the observed
moment [22] that induces a field Bspin = 8π

3
M
a3 = 100 G, where a is the U–U bond length

(a = 4 × 10−8 cm). Furthermore, this moment is aligned along the c-axis, and thus
cannot account for the isotropic nature of the local field distribution detected by NMR. These
measurements indicate that, as the hidden order develops, a static isotropic magnetic field
develops at each silicon site. This is strong evidence that the hidden order parameter breaks
time-reversal invariance.

The magnetic fields at the silicon nuclei have two possible origins [47]: the conduction
electron–spin interaction and the orbital shift that is due to current densities. In URu2Si2,
the observed Knight shift [44] indicates a strong Ising anisotropy of the conduction electron
fluid along the c axis; therefore the electron-spin coupling is unlikely to be responsible for the
measured isotropic field distribution at the Si sites. It thus seems natural that these local fields
are produced by orbital currents that develop at T0, and thus we attribute the observed isotropic
linewidth to the orbital shift.

It is this line of reasoning that led us (with Mydosh) to propose [11] that URu2Si2 is an
incommensurate orbital antiferromagnet at T = T0 with charge currents circulating between
the uranium ions. The planar tetragonal structure of URu2Si2 presents a natural setting for an
anisotropic charge instability of this type. We can estimate the local fields at the silicon sites
that are produced by the orbital currents. On dimensional grounds, the current along the U–U
bond is given by I ∼ e�

h̄ , where� is the gap associated with the formation of the hidden order at
T0; we note that this expression also emerges from an analysis of the Hubbard model [2]. If this
orbital charge current is flowing around a uranium plaquette of side length a, then the magnetic
field produced at a height a above it is given by Ampere’s law to be B ≈ 2

ac
e�
h̄ = 11 G, in good

agreement with the observed field strength [44]; here we have used the experimental value [14]
� = 110 K. Note that the resulting orbital moment, mOAFM = 0.02 µB (mOAFM = Ia2), is
comparable to the effective spin moment at ambient pressure. We emphasize that an orbital
moment produces a field an order of magnitude less than that associated with a spin moment of
the same value; the low field strengths observed at the silicon sites are quantitatively consistent
with our proposal that they originate from charge currents.
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This orbital moment, mOAFM = 0.02 µB, can also account for the entropy loss at the
transition. We emphasize that its large value suggests that the amplitude of any proposed
density wave must be a significant fraction of its maximally allowed value, and will proceed
to show that this is the case for the OAFM. In a metal the change in the entropy is given
by �S = �γnT0 where �γn is the change in the linear specific heat coefficient resulting
from the gapping of the Fermi surface. �γn is inversely proportional to the Fermi energy
εF of the gapped Fermi surface, so in general the change in entropy per unit cell is given by
�S ≡ �S

kB
∼ ( kB T0

εF
). Since the transition at T0 is mean-field in nature [19], we have � ∼ T0

so that �S ∼ �
εF

. Now we recall that the orbital magnetic moment is

mOAFM = Ia2 =
( e

h̄

)
a2� ≈ 0.02 µB (2)

such that it is saturated when � ∼ εF

m∗
OAFM ∼

( e

h̄

)
a2εF ∼

(
a

a0

)2 (
εF

εH

)
µB ∼ 0.1 µB (3)

analogous to the saturation value of the electron spin µB = ( e
h̄

)
a2

0εH, where a0 and εH are the
Bohr radius and the energy of the hydrogen atom respectively; here we have used a

a0
∼ 102

and εF
εH

∼ MH
M∗ ∼ 10−3, where MH and M∗ refer to the mass of hydrogen and of URu2Si2

respectively. Then the change in entropy at the transition (�S ∼ �
εF

) due to the development
of orbital antiferromagnetism can be expressed as

�SOAFM ≈
(

mOAFM

m∗
OAFM

)
≈ 0.02

(
µB

m∗
OAFM

)
≈ 0.2 (4)

which is a number (0.2 = 0.3 ln 2) in good agreement with experiment [14]. We also note
that the critical field for suppressing the thermodynamic anomalies is distinct from its spin

counterpart: the ratio H orb
c

H spin
c

∼ µB
m∗

OAFM
∼ 10 is qualitatively consistent with the observed critical

field associated with the destruction of hidden order [25, 26]. We emphasize that the sizable
entropy loss associated with the development of orbital antiferromagnetism in URu2Si2 is a
direct consequence of its renormalized electron mass ( M∗

M ∝ εH
εF

). More generally the orbital
moment is a larger fraction of its saturation value than is its spin counterpart, and this leads to
the large entropy loss.

Orbital antiferromagnetism can therefore account for the local field magnitudes at the
silicon ions and for the large entropy loss at the transition. Our next step is to tune the ordering
wavevector to fit the isotropic distribution at these sites and then to determine the real-space
fields throughout the sample volume. This can then be Fourier transformed to make predictions
for neutron scattering [11]. We note that it has been suggested [38] that the isotropic nature of
the field distributions at the silicon sites may be due to impurity broadening. Though disorder
is certainly present in these samples, we believe that the incommensurate nature of the density
wave is the origin of this isotropy. Towards proving this point, we have determined the
anisotropic field distributions at non-silicon sites; their observation via NMR would certainly
not be possible if there were significant disorder smearing.

Before proceeding with this programme, let us comment briefly on the current
experimental situation regarding the proposal of incommensurate orbital antiferromagnetism
in URu2Si2. We admit that our proposal is closely linked to the ambient-pressure NMR
experiments [44], which are the only direct evidence of broken time-reversal symmetry in
the hidden ordered phase and have not been reproduced by other groups. We note that muon
spin resonance measurements [31, 32] support the emergence of local fields with the same
temperature dependence as that associated with NMR, but their overall amplitudes are two
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Figure 4. (a) Labelling of sites around a single plaquette. (b) Schematic of circulating currents
IC(X j ) = I0 exp[iQ · x j ] flowing in the uranium plaquettes in the ab plane. The plaquettes are
labelled by the coordinates of their centre X j .

orders of magnitude less than that seen in the NMR measurements. This is a point to which
we return in the discussion. Although incommensurate peaks have been seen in inelastic
neutron scattering measurements [23, 48, 49], these are due to excitations above the partly
gapped Fermi surface and are not directly related to the orbital antiferromagnetism. Current
experimental resolution for elastic scattering—a direct probe of the incommensurate orbital
antiferromagnetic order—is not yet good enough to confirm or deny the OAFM scenario. Here
we present technical support for previous predictions for neutron structure factors [11], while
also making specific suggestions for measurements where the signal should be sufficiently
strong to be observed practically.

2.2. Predictions for neutron scattering

In order to calculate the neutron cross section for scattering by incommensurate orbital
antiferromagnetic order, we use the Born scattering formula,

dσ

d�
=
(

gNe2

8π h̄c

)2

|B(q)|2 = r2
0 S(q), (5)

where gN is the neutron gyromagnetic ratio, q the scattering wavevector of the neutrons,
|B(q)|2 is the structure factor of the magnetic fields produced by the orbital currents and
S(q) = |B(q)|2/(4πµB)

2 is the structure factor measured in units of the Bohr magneton (µB).
We shall compute the magnetic field as the curl of the vector potential, B(x) = ∇ × A.

The procedure will be to compute the vector potential produced by the circulating current
around a given plaquette. We shall denote the coordinate of the centre of plaquette j by X j .
The corners of this plaquette are located at sites x(r)j , (r = 1, 4), where

x(r)j = X j + x(r), (r = 1, 4),

as shown in figure 4(a). The circulating current around plaquette j is then taken to be

IC(X j) = I0eiQ·X j + H.c. (6)

Using Ampere’s law, link 1–2 will produce a contribution to the vector potential given by

A12(x) = 1

c

∑
j

∫ x(2)j

x(1)j

dx ′ IC(X j)x̂12

|x − x′
j |
, (7)

where x̂12 is the unit vector pointing along the bond from 1 to 2. Writing x′
j as

x′
j = x(1)j +w (x(2) − x(1)),
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where 0 < w < 1 defines the position along the link, we have

A12(x) = a

c

∑
j

∫ 1

0
dw

IC(X j )x̂12

|x − {x(1)j +w(x(2) − x(1))}| (8)

for the vector potential, where a is the U–U bond length in the ab plane.
We now compute B12 = ∇ × A12, and take the Fourier transform to obtain

B12(q) = a

c

∑
j

∫ 1

0
dw
∫

d3x e−iq·x IC(X j)x̂12 × ∇ 1

|x − {X j + x(1) +w(x(2) − x(1))}|

= ia

c

∑
j

IC(X j)x̂12 × q
∫ 1

0
dw
∫

d3x e−iq·x 1

|x − {x j + x(1) +w(x(2) − x(1))}| .

(9)

Using ∫
d3 e−iq·x 1

|x − a| = 4π

q2
e−iq·a,

we obtain

B12(q) = i4πa

q2c

∑
j

IC(X j)x̂12 × q
∫ 1

0
dw exp[−iq · (x j + x(1) +w(x(2) − x(1)))]

= −4πa

q2c

∑
j

e−iq·X j IC(X j )
x̂12 × q

q · (x(2) − x(1))
(e−iq·x(2) − e−iq·x(1) )

≡ 4π I0

q2c

(
F12(q)× q

)∑
j

ei(Q−q)·X j , (10)

where we have replaced IC(X j ) = I0eiQ·X j and

F12(q) = x̂12

q · x̂12
(e−iq·x(1) − e−iq·x(2) ) (11)

is the form factor associated with link 1–2 in the plaquette centred about X j . To sum over all
of the links around the plaquette, we must add together the form factors

F(q) = F12(q) + F23(q) + F34(q) + F41(q)

=
[

x̂
q · x̂

{eiq·(x̂+ŷ)a/2 − e−iq·(x̂−ŷ)a/2 + e−iq·(−x̂+ŷ)a/2 − e−iq·(x̂+ŷ)a/2} − x̂ ↔ ŷ
]

= 4 sin

(
qxa

2

)
sin

(
qya

2

){
ŷ

q · ŷ
− x̂

q · x̂

}
. (12)

We let Q be the wavevector for the orbital order so that I (x j ) = I0 exp[−iQ · x j ].
Replacing F12 → F in equation (10), we obtain the complete Fourier transform of the

magnetic field:

B(q) =
∑

j

exp[i(Q − q) · x j ] sin
(qxa

2

)
sin
(qya

2

){ ŷ
q · ŷ

− x̂
q · x̂

}
× q. (13)

The U sites x j can be written as

x j = a( j1, j2, 0) +
c

2
(0, 0, j3) +

1

2
(1 − (−1) j3)

(a

2
,

a

2
, 0
)
, (14)

where c is the separation between even or odd numbered U planes. The unit cell has lattice
vectors (a, 0, 0), (0, a, 0), (0, 0, c). For an isotropic distribution of magnetic fields at the Si
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sites, we can reasonably expect Q to be staggered between successive U layers. We permit Q
to be incommensurate in the ab plane:

Q = (Qx , Qy, 0) +
2π

c
(0, 0, 1). (15)

Summing over the lattice sites in equation (13), we find

BOAFM(q) = 8π I0

q2c

∑
G

δq,Q+G
[
1 + eiG·(a/2,a/2,c/2)]

× sin

(
qx a

2

)
sin

(
qya

2

){
x̂

q · x̂
− ŷ

q · ŷ

}
× q, (16)

where G = 2π[n1/a, n2/a, n3/c] is a reciprocal lattice vector.
Equation (16) should be contrasted with the corresponding expression if the order

parameter were a spin density wave instead of an orbital antiferromagnet:

BSDW(q) = 4π

c

∑
G

δq,Q+G
[
1 + eiG·(a/2,a/2,c/2)] {q̂ × (M × q̂)

}
. (17)

We note that a major difference between the two cases is that BOAFM(q) decreases rapidly as
q−2 while BSDW(q) is constant. This makes OAFM much harder to detect in neutron scattering
experiments than its SDW counterpart. Second, the term (q× (M×q)) in BOAFM(q) indicates
that scattering is suppressed for q = Q since for an SDW along the c axis, M ‖ Q = 2π

c (0, 0, 1).
There is no such term in BOAFM(q). Thus the presence of a finite scattering amplitude at this
particular wavevector in URu2Si2 would be a ‘smoking gun’ confirmation of incommensurate
orbital antiferromagnetism as the hidden order.

Next we turn to obtaining the structure factor |B(q)|2. Neutrons couple to the orbital
currents via their magnetic moment (µN = gNµBS) as E = −µN ·B. For incoherent neutrons,
|B(q)|2 is the modulus squared of Q averaged over the orientation. the neutrons. Thus

S(q) = |B(q)|2
(4πµB)2

=
(

N I0a2

cµB

)2 ∑
Gn1 ,n2,n3

δq,Q+G

{
j0
[qxa

2

]
j0
[qya

2

]}2

×
[

1 + cos[π(n1 + n2 + n3)]

2

]2 q2
x + q2

y

q2
x + q2

y + q2
z

, (18)

where j0(x) = sin x
x and N is the number of U sites. From this expression, we find that the

maximum scattering intensity is predicted [11] to lie in a ring Q = Q0 + q of radius |q| ∼ 0.2
centred on the wavevector Q0 = (001), where q lies in the ab plane. Once again, we emphasize
that scattering in the vicinity of Q0 is forbidden for the case of ordered spins along the c-axis;
thus the observed presence of neutron scattering intensity at this particular wavevector would
be a ‘smoking gun’ confirmation of orbital antiferromagnetism as the hidden order.

In general the structure factor can be written as a product

S(q) = f (q)g(q), (19)

where g(q) is a function periodic in the reciprocal lattice vector but f (q) is not. For the case
of orbital antiferromagnetism, the calculated structure factor yields an asymptotic form for the
form factor f (q) ∼ 1

q4 . This power-law decay of the intensity peaks is due to the extended
nature of the scattering source in contrast to the exponentially decaying structures observed
for point-like spin antiferromagnetism.

It is tempting to state that such power-law peaks will be a clear signature of orbiting charge
currents, but we still need to determine whether the overall intensities are observable. We can
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estimate the strength of the predicted OAFM neutron signal compared to that associated with
spin magnetism at ambient pressure. Our calculations indicate that a fifth of the total integrated
weight of S(q) (TIWSQ) resides in the first Brillouin zone for the OAFM. Using the sum rule
that relates the total ISWQ (integrated weight of S(q)) to the square of the moment, we have

(IWSQ)BZ1 = 1
5 (TIWSQ)OAFM = 1

5 (mOAFM)
2 (20)

= 1
500 (mspin)

2 = 1
500 (TIWSQ)spin (21)

where we have used mOAFM = 0.2µB and mspin = 0.3µB. Since the magnetic region occupies
roughly a tenth of the sample at ambient pressure we then write

(IWSQ)BZ1 = 1
50 Measured (TIWSQ)spin (22)

which indicates that the scattering peaks in the first Brillouin zone due to orbital ordering
should have roughly 1/50 the intensity of the analogous spin peaks at ambient pressure. There
have been two exploratory neutron studies [48, 49] but neither was conclusive due to issues
of resolution. In particular the more recent elastic measurements [49] were not performed at
the predicted wavevector Qp = (τp, τp, 1), where there should be no dipole scattering; please
recall that here the form factor ∼ (q × m) and m is aligned with the c-axis. More specifically
the scattering intensity should be a factor of 20 higher than at Qe = (1 + τx , τy, 0) where the
experiments were performed, and the experimental resolution should be good enough then to
prove/refute the orbital antiferromagnetism proposal.

2.3. Nuclear magnetic resonance linewidth at the Si and the Ru sites

Nuclear magnetic resonance (NMR) is a local probe of the strength and the local distribution of
the magnetic field distribution in the material. We use experimental NMR results to determine
the ordering wavevector associated with the orbital antiferromagnetism, which can then be
included in the structure factor calculated above. Thus neutron scattering and NMR are
complementary. Equation (8) gives the vector potential at a point x due to a current in link 〈12〉
of a plaquette centred at X j . Contributions from other links in the plaquette may be similarly
written out (see figure 4). The magnetic field at any point x can be obtained using B = ∇×A,
where A is the total vector potential obtained by summing contributions from all links and
plaquettes. We give detailed expressions for A in the appendix.

For the sake of completeness, we review [10, 11] our arguments regarding the Si NMR
measurements [44] and the ordering wavevector of the orbital antiferromagnetism. We note
that the silicon atoms in URu2Si2 are located at low-symmetry sites above and below the
uranium plaquettes, so that the fields there do not cancel. Therefore the proposed OAFM must
have an incommensurate Q �= (π, π) in order to produce isotropic field distributions at the
silicon sites. If the order parameter in the hidden order phase is OAFM, then such a magnetic
field distribution at the Si sites would be possible if the wavevector for orbital ordering were
incommensurate [10, 11],

Q = 2π

a
(0.22 cosφ, 0.22 sin φ, a/c). (23)

Figure 5 shows the distribution of the magnetic field lines about the ab plane for an
incommensurate Q corresponding to φ = π/4 in equation (23), and viewed in the [010]
direction.

A convenient definition of the anisotropy in the magnetic field at a given site is

ζ = |(B⊥ − B‖)/(B⊥ + B‖)|.
Figure 6 shows the anisotropy as a function of the Q vector. While the field distribution at
the Si sites is isotropic, that need not be the case at other sites such as Ru; furthermore the
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Figure 5. The distribution of the magnetic field lines about the ab plane for an incommensurate
Q = 2π

a (0.16, 0.16, a/c), and viewed in the [010] direction. The black circles represent U atoms
in the ab plane.
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Figure 6. Anisotropy of magnetic field distri-
bution at the Si sites. The anisotropy is found to
vanish on a ring of wavevectors approximately
given by Q = 2π

a (0.22 cosφ, 0.22 sin φ, a/c).

anisotropic nature of the field distribution at the Ru sites would indicate that disorder averaging
is not at play here. If we take as the origin any uranium atom in the lattice, we find the Ru
sites at coordinates

XRu = a

2
(i − j + 1, i + j, 0) +

c

2
(0, 0, k + 1/2), (24)

where i, j, k are integers. Figure 7 shows the anisotropy of the magnetic field distribution at
the Ru sites.

Recent Ru NMR measurements [50] report a local magnetic field anisotropy of around
0.3. Values of Q deduced from our OAFM model using the Ru NMR data should of course be
consistent with Si NMR. The anisotropy of the magnetic field at the Ru sites calculated from
our model shows strong variations as the orientation of the incommensurate wavevector given
in equation (23) is varied. Anisotropy of field at the Ru sites for OAFM ordering wavevectors
given by equation (23) varies from about 0.7 along the φ = 0, π/2 directions to nearly unity
along φ = π/4. Thus the most likely incommensurate wavevector Q for OAFM lies close to
the φ = 0, π,±π/2 directions.

Neutron scattering measurements [49] show enhanced scattering for T > T0 at the
incommensurate wavevectors

Qexp = (2π/a)(n1 + 0.4 cosφ, n2 + 0.4 cosφ, n3), (25)

where n1 + n2 + n3 is an odd integer. Below T0, the ring of excitations seems to collapse toward
the x and y directions, decreasing in intensity. The structure factor predicted in equation (18)
could not be verified/refuted due to issues of resolution [49]. According to equation (18),
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Figure 7. The anisotropy of magnetic field distribution at the Ru sites for an orbital wavevector of
the form Q = (Qx , Qy , 2π/c). Darker shades indicate lower anisotropy.

the structure factor measured near Qexp = (2π/a)(1.4, 0, 0), as was done in the most recent
experiment [49], has a scattering intensity that is smaller than that at Q = (2π/a)(0.4, 0, a/c)
by a factor of more than five. In an earlier experiment [23], enhanced scattering was observed
at Q = (2π/a)(1.4, 0, 0) above the transition temperature T0. The scattering intensity
was sharply enhanced for T < T0, and furthermore, the scattering linewidth decreased to
resolution-limited values. More work is needed to verify whether the incommensurate peak
observed in neutron scattering measurements is related to equation (23) deduced from Si and
Ru NMR data using our model of orbital antiferromagnetism, and we strongly suggest elastic
neutron scattering measurements at the wavevector predicted to have the greatest intensity
(Q = (2π/a)(0.4, 0, a/c)) to test OAFM as hidden order.

3. Towards a microscopic description of the hidden order

We now turn to a more microscopic approach to the hidden order. As we have already noted, a
proper theoretical description of URu2Si2 must encompass both local and itinerant features of
the problem. A general duality scheme for heavy electron systems has been proposed [51]. In
this model, the itinerant excitations are constructed from the low-lying crystal-field multiplets
of the uranium atom. The quasiparticles associated with the heavy Fermi liquid are composite
objects formed from the localized orbital and spin degrees of freedom of the U ions and
the conduction electron fields. The phase transition in this model is then a Fermi-surface
instability of these composite itinerant f-electrons. This approach has been adapted [52] to
describe the coexistence of hidden order with a small moment in URu2Si2. With the more recent
understanding that the hidden ordered phase does not contain a staggered magnetization, we
have revisited this duality scheme [12] and, guided by experiment, now discuss its implications
for the nature of the mysterious order that develops at T = T0.



5298 V Tripathi et al

Table 1. Possible symmetries for particle–hole pairing.

Name Aσσ
′

k (Q) T -invariance Local fields

SDW (isotropic spin-density wave) σ No Yes
CDW (isotropic charge-density wave) Const. Yes No
d-SDW σ (cos(kx a)− cos(kya)) No No
q-CDW (quadrupolar) cos(kx a)− cos(kya) Yes No
OAFM (orbital antiferromagnet) i(sin(kx a)− sin(kya)) No Yes

3.1. Possible symmetries for particle–hole pairing

We begin with the assumption that all the excitations of URu2Si2 that condense into the
hidden ordered state are of itinerant character. More specifically, we will assume that all of
the system’s local physics (e.g. local moment character of the f-electrons) has been absorbed
into the formation of composite quasiparticles. Given this premise, it then follows that key
aspects of the (hidden) order parameter will be expressed through its matrix elements between
quasiparticle states. If we denote it by the operator �̂ , then its general matrix element between
quasiparticle states is

〈k + Q/2, σ |�̂|k − Q/2, σ ′〉 = Aσσ
′

k (Q) (26)

where Q is the ordering wavevector and |kσ 〉 is the quasiparticle state of momentum k.
Microscopically we would have to characterize �̂ in terms of the detailed crystal-field split
states of the U ion, but for the purposes of characterizing the phase transition, quasiparticle
matrix elements should suffice. Within the Hilbert space of the mobile f-electrons, the order
parameter can then be written

�̂ ≡ Aσσ
′

k (Q)c†
k+Q/2,σ ck−Q/2, σ ′ (27)

where Aσσ
′

k (Q) is a general function of spin and momentum.
We are therefore considering a class of density waves with the most general pairing in

the particle–hole channel characterized by Aσσ
′

k (Q). We now categorize the possible particle–
hole pairings [12] in URu2Si2. Assuming that the hidden order develops between the uranium
atoms in each basal plane, we restrict our attention to nearest-neighbour pairings on a two-
dimensional square lattice, and display the five resulting possibilities in table 1 in equation (27).
We emphasize that each of these pairing choices will partially gap the Fermi surface,accounting
for the large entropy loss and the observed anomalies in several bulk quantities [11]. In
conventional charge- and spin-density waves (CDWs and SDWs respectively), the quantity
Ak(Q) is an isotropic function of momentum. However, in more general cases Ak(Q) will
develop a nodal structure which leads to anisotropy (table 1) that is favoured by strong Coulomb
interaction, as we shall discuss in the next section.

3.2. General discussion of anisotropic charge instabilities in Fermi liquids

At low temperatures, heavy electron materials form almost incompressible Landau–Fermi
liquids in which the residual interactions between heavy quasiparticles are driven by
strong, low-lying antiferromagnetic spin fluctuations. This harshly renormalized electronic
environment is conducive to the development of instabilities in which electrons or holes form
bound states that contain nodes in their pair wavefunction.

Such arguments are well established in the context of anisotropic Cooper pairing [45, 53].
Here we extend these ideas, arguing that an almost incompressible Fermi liquid is highly
susceptible to the formation of anisotropic density waves, where the staggered electron–hole
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condensate contains a node in the pair wavefunction. This issue first arose in the context of
orbital ordering in cuprate superconductors [54]. Here it has been emphasized that strong
Coulomb interactions suppress electron–hole bound-state formation in CDWs, unless the
bound state contains a node [6]. Heavy electron fluids provide a unique opportunity to apply
these arguments to three-dimensional systems. Furthermore there is no controversy associated
with the Landau–Fermi liquid of their normal states, a situation in distinct contrast to the
situation in the cuprates.

In a heavy electron fluid, the density of states is severely renormalized so that the ratio of
the quasiparticle and the bare band-structure density of states

N∗(0)
N(0)

∼ 1

Z

is typically at least a factor of ten. In these systems the magnetic susceptibility, given in
Landau–Fermi liquid theory by

χ = N∗(0)

1 + Fa
0

,

is weakly enhanced. By contrast, the charge susceptibility is severely depressed by strong
Coulomb interactions and is essentially given by the unrenormalized band-structure value

χc = N∗(0)

1 + Fs
0

∼ N(0),

which is why the fluid is characterized as ‘almost incompressible’. It is this basic effect that
rules out the formation of isotropic charge-density wave order and s-wave superconductivity.

Response functions that contain an anisotropic form factor are unaffected by the strong
Coulomb interactions. The key point here is that the strong interaction effects are local and thus
they do not affect the higher Landau parameters,due to the nodes in the corresponding spherical
harmonics. For example, if we consider a ‘chemical potential’ which couples anisotropically to
the Fermi surface in the lth angular momentum channel, then the corresponding susceptibility
is given by

χ(l)c ∼ N∗(0)
1 + Fs

l

∼ N∗(0)

provided the higher Landau parameters are not much larger than unity. From this discussion, we
see that large mass renormalization and strong Coulomb repulsion suppresses isotropic CDW
formation but that analogous instabilities can form in higher angular momentum channels.

3.3. Anisotropic pairings: the contenders

We have just argued that the large Coulomb repulsion between the heavy fermion quasiparticles
(incompressibility) in URu2Si2 discourages isotropic pairing in the CDW channel. This
expectation is confirmed by experiment, for charge-density wave formation is expected to
produce a lattice distortion, yet none is observed to develop URu2Si2 below the 17 K phase
transition. Similarly, neutron scattering is inconsistent with the presence of an isotropic spin-
density wave in the hidden ordered phase [22, 23]. Thus, mainly due to the incompressibility
of the heavy Fermi liquid, we are left with three remaining anisotropic particle–hole pairing
states (see table 1).

The possibility of d-spin-density waves as the hidden order in URu2Si2 has been raised
by several authors [16, 55]. In a Stoner analysis, d-SDWs require ferromagnetic exchange
interactions of neighbouring spins. In particular, for antiferromagnetic interactions, a Stoner



5300 V Tripathi et al

+
+

–

+

+

–

–

–
(a) (b)

f (k) = cos(kx ) – cos(ky ) f (k) = i[sin(kx ) – sin(ky )]

Figure 8. (a) Incommensurate quadrupolar density wave (qCDW). In two dimensions, the
form factor cos(kx ) − cos(ky) leads to an incommensurate density wave with a quadrupolar
charge distribution, the CDW analogue of a d-wave superconductor. (b) Incommensurate orbital
antiferromagnet. Here currents circulate around square plaquettes defined by nearest-neighbour
uranium ions.

analysis reveals that the d-SDW has a lower transition temperature than competing quadrupolar
CDW (q-CDW) or spin-density waves [56]. Thus a d-SDW scenario favours ferromagnetic
fluctuations in URu2Si2; by contrast, its transition at T ∗ = 1.2 K to a d-wave superconductor
indicates the importance of antiferromagnetic fluctuations at T > T ∗.

Before discussing the two remaining options presented within the framework of table 1,
we want to mention two recent proposals for the hidden order parameter that both lead to
quasiparticle matrix elements similar to those of a higher-order SDW. In the first one [43], the
authors argue that consistency with experiment can be maintained for an SDW that develops
predominantly in the p- or s-bands whose neutron form factor at the Bragg peaks is significantly
smaller than that of f-electrons. Here the key conceptual difficulty is that the matrix element of
the order parameter in the f-bands would have to be small; yet the large entropy of condensation
observed at T = T0 is almost certainly associated with these same f-electrons. It has also
been suggested [42] that the hidden order results from octupolar crystal-field states. In the
quasiparticle basis, such an order parameter behaves like a spin-density wave with a small
g-factor. At present, the viability of this approach awaits more detailed predictions regarding
the magnetic distributions within the sample that then, like for the OAFM scenario, could be
tested by NMR and neutron measurements.

Returning to the table of possible pairing symmetries (table 1), we therefore have two
remaining options: the quadrupolar charge-density wave [41] (figure 8(a)) and the orbital
antiferromagnet (figure 8(b)) [10, 11], where both scenarios are consistent with our picture
of URu2Si2 as an incompressible Fermi liquid with strong antiferromagnetic fluctuations.
Each order parameter has nodes, so neither couples directly to the local charge density.
Furthermore, both incommensurate density waves couple weakly to uniform strain, and thus
are both consistent with the observed insensitivity [35] of the elastic response at T0. Recent
uniaxial stress measurements suggests that the hidden order is sensitive to the presence of
local tetragonal symmetry [57], a feature that can be explained within both frameworks for
completely different reasons. In the orbital antiferromagnet the currents are equal in each basal
direction [11], whereas within the quadrupolar scenario it is known that some of the crystal-
field states with tetragonal symmetry are quadrupolar [40]. Unfortunately the diamagnetic
response cannot be used to discriminate between these two scenarios, as the contribution from
orbital antiferromagnetism is small compared to that associated with the gapping of the Fermi
surface ( χPauli

χdiam
∼ 100).

At present, the key factor distinguishing the orbital antiferromagnet from the quadrupolar
charge-density wave scenarios is the absence or presence of time-reversal breaking. Because
the local field distributions and strengths measured by NMR have not yet been observed by other



Itinerancy and hidden order in URu2Si2 5301

methods, there is still uncertainty about these results. We note that it has been argued [42]
that the observation of a stress-induced moment [57] implies that the hidden order breaks
time-reversal symmetry; much as we would like to believe this, we note that this result can be
attributed to a volume-fraction effect and thus is inconclusive. Both the quadrupolar charge-
density wave and the orbital antiferromagnet have nodes in their respective gaps, which should
in principle be observable via photoemission and/or scanning tunnelling microscopy, though
issues associated with the nature of the surface of this material remain to be resolved. However,
the quadrupolar charge density wave is not expected to lead to magnetic neutron scattering,
and therefore detailed elastic measurements are critical for resolving the nature of the hidden
order parameter.

4. Toy model for anisotropic particle–hole pairing

Next we explore a simple t–J model for heavy electrons with antiferromagnetic spin
fluctuations, and explore different orderings. We are motivated by experiment in our choice
of the model. URu2Si2 undergoes a phase transition to a d-wave superconducting state at
T0 = 0.8 K, and the pairing is understood to be mediated by antiferromagnetic spin fluctuations.
The same t–J model also encompasses orbital antiferromagnetism, quadrupolar CDW, and
isotropic SDW.

We consider a simplified model for the heavy Fermi liquid, described by H = H0 + HI,
where

H0 =
∑

k

εkc†
kσ ckσ

describes the band of heavy electrons and

HI =
∑

q

J (q) S(q) · S(−q) (28)

is the interaction between them. Here, S(q) = 1
2 c†

k+qασαβckβ is the Fourier transform of the
local spin operator. In this simplified model, we consider the indices σ to represent the pseudo-
spin indices of the spin–orbit-coupled, heavy electron band. We recall that we are working
in an itinerant basis where the local physics (e.g. spin–orbit coupling) is absorbed into the
composite quasiparticle states. Using the completeness relation σαβ · σγδ + δαβδγη = 2δαηδγβ
we may rewrite this interaction as

HI = 1
2

∑
i j, σσ ′

Ji j

(
c†

iσ ciσ ′ c†
jσ ′c jσ − 1

2 ni n j

)
.

Here we have rewritten the electron operators in a local basis, so that c jσ = 1√
N

∑
k c†

kσ eik·x j

is the electron creation operator at site j , N is the number of sites in the lattice and
Ji j = 1

N

∑
q J (q)eiq·(xi −x j ) is the spin interaction between sites i and j . We shall ignore the

second term, which involves the heavily suppressed fluctuations in quasiparticle occupation at
each site. The first term can be decoupled as

HI = − 1

2N

∑
q,k,p,σσ ′

J (k − p)c†
σ,k+

cσ,k−c†
σ ′,p−cσ ′,p+ , (29)

where k± = k ± 1
2 q, etc. The interaction potential J (q) can be expanded into partial waves,

Vl = 2
∫ 1

0
dx x Pl(1 − 2x2)J (2 px), (30)
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where x = sin(θ/2) and p ≈ pF. We require that the l = 0 (isotropic) component be large and
negative, reflecting strong on-site quasiparticle repulsion. This has the effect of suppressing
isotropic particle–hole pairing. However, this potential Vl , for l > 0, could be attractive, which
would then favour particle–hole pairing in higher angular momentum channels. Such higher
angular momentum components are present due to anisotropy of the interaction J (q), which
occurs at sufficiently large values of q where the underlying symmetry of the crystal becomes
important.

For the purposes of a toy model, we shall assume that in URu2Si2 nearest-neighbour
antiferromagnetic spin fluctuations (AFMSFs) predominate, so that

J (q) ≈ 2J1γ
1
q , (31)

where the form factor γ 1
q = cos(qxa) + cos(qya). With this approximation, the interaction in

equation (29) is separable:

HI = − J1

N

∑
q∈ 1

2 BZ,k,p;�=1,4

(γ �p ρp(q))†γ �k ρk(q), (32)

where

ρk(q) =
∑
σ

c†
k+ 1

2 qσ
ck− 1

2 qσ (33)

are the particle–hole operators and

γ
1,2
k = cos(kxa)± cos(kya)

γ
3,4
k = i(sin(kx a)± sin(kya))

(34)

are form factors that transform under the point-group symmetry of the lattice. Since
ρk(q) = ρ

†
k(−q), the quantity inside the summation is symmetric under q → −q, and so, by

doubling the prefactor and restricting the sum over q to one-half the Brillouin zone, we assure
that every term in the q sum is independent.

This interaction is attractive and of equal magnitude in the four anisotropic channels.
γ 1

k , γ 2
k , γ 3,4

k have s-like, d-like and p-like symmetry respectively. Notice that bond-
variables

∑
σ 〈c†

iσ c jσ 〉 are invariant under time reversal,
∑

σ 〈c†
iσ c jσ 〉 = ∑σ 〈c†

jσciσ 〉∗ and the

imaginary pre-factors in γ 3,4
k have been chosen so that the form-factors respect this symmetry,

i.e. γ �k = (γ �−k)
∗.

By carrying out a ‘Hubbard–Stratonovich’ decoupling of HI, we obtain

HI →
∑

q∈ 1
2 BZ,k;�=1,4

[
��

qγ
�
k ρk(q) + �̄�

q (γ
�
k )

∗ρ†
k(q)

]
+

N

2J1

∑
q∈ 1

2 BZ; �=1,4

�̄�
q�

�
q . (35)

Now the mean-field solution to this expression is determined by the saddle-point condition

��
q = − J1

N

∑
k

(γ �k )
∗〈ρk(−q)〉. (36)

In general, the density wave will condense at a primary wavevector q = Q. For a realistic
model, Q may well be incommensurate, in which case it will be accompanied by a family of
corresponding Q′ that form a ‘star’ of q-vectors under the point group. There will in general
also be higher harmonics of Q. To illustrate the key ideas, however, we shall assume a simple
model in which a single Q dominates the density wave, i.e.

��
q = ��δq,Q + �̄�δq,−Q.

For this discussion, we shall also assume that the Fermi surface is ‘almost nested’, so that
the Fermi surface can be divided into two equal parts or reduced Brillouin zones (RBZ):
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region I in which |εk− 1
2 Q| � |εk+ 1

2 Q| and region II in which |εk− 1
2 Q| � |εk+ 1

2 Q|. In
perfectly nested Fermi surfaces εk = −εk+Q are perfectly degenerate. For a square lattice
and Q = (π, π) the reduced Brillouin zone is the diamond-shaped region bounded by
−π � ky � π,−π + |ky| � kx � π − |ky|.

The mean-field Hamiltonian is then

HMFT =
∑

k∈RBZ

(c†
k+ , c†

k−)

[
εk+ �k

�̄k εk−

](
ck+

ck−

)
+ N

∑
�=1,4

�̄���

J1
(37)

where k± = k ± Q/2 and �k = ∑
� �

�γ �k . Here, Q is the wavevector for particle–hole
pairing. Diagonalizing the electronic part of the total Hamiltonian yields two bands,

E (±)
k = 1

2 (εk+ 1
2 Q + εk− 1

2 Q)±
√

1
4 (εk+ 1

2 Q − εk− 1
2 Q)

2 + |�k|2. (38)

The mean-field solution for pairing density 〈ρp(Q)〉 in equation (36) is obtained by setting
the variation of the free energy F ,

F = −T
RBZ∑

k

ln[(1 + exp(−βE (+)
k ))(1 + exp(−βE (−)

k ))] + N
∑
�=1,4

�̄���

J1
(39)

with respect to �̄� to zero. This yields the gap equation,

��

J1
= 1

N

RBZ∑
k,�

�k(γ
�
k )

∗ f (E (−)
k )− f (E (+)

k )

E (+)
k − E (−)

k

. (40)

In the special case where condensation occurs in a single channel � = �0, this simplifies to

1

J1
= 1

N

RBZ∑
k

|γ �0
k |2 f (E (−)

k )− f (E (+)
k )

E (+)
k − E (−)

k

. (41)

At T = T0, equation (40) is essentially a Stoner criterion J1χ0ψ(0) = 1 where

χ0ψ(q) = 1

N

RBZ∑
k

|γ �0
k |2 f (εk−−q/2)− f (εk++q/2)

εk++q/2 − εk−−q/2
(42)

is the susceptibility associated with the hidden order parameter ψ , measured at a wavevector
q + Q.

Without details of the band structure we cannot predict which of the four order parameters
will dominate. Some general comments are however in order. Although the pairing
equation (40) does not involve any isotropic order parameter, the extended-s wave order
parameter γ 1

k does have the same point-group symmetry as a pure s-wave, and if it condenses, it
will tend to induce charge modulation. In a real heavy electron system, the effects of Coulomb
interaction will renormalize the effective coupling constant for this channel, eliminating this
order parameter from consideration. Of the remaining cases, γ 2

k corresponds to a q-CDW order
and γ 3,4

k can be associated with spontaneous orbital or line currents between the U atoms, as
we shall now show.

Let us consider the current

ji j = − iet

h̄

∑
σ

(c†
jσciσ − c†

iσ c jσ ) (43)

from i to j along bond i– j . Orbital order corresponds to a non-vanishing circulation of the
current in a plaquette:

IC = 1

4a

∮
j · dl �= 0
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and, therefore, is of the form (figure 4(a))

IC(X) = 1
4 [ j12 + j23 + j34 + j41] , (44)

where (X) is the position of the centre of the plaquette, and the indices (1–4) label the corners
of the plaquette, taking the sense of rotation to be anti-clockwise.

Now consider the evaluation of the bond variable
∑

σ 〈c†
σ (x + a/2)cσ (x − a/2)〉. Taking

the Fourier transform of each electron field, we obtain∑
σ

〈c†
σ (x + a/2)cσ (x − a/2)〉

= 1

N

∑
k,k′,σ

〈c†
kσ ck′σ 〉ei[k·(x+a/2)−k′·(x−a/2)]

= 1

N

∑
k,k′

〈ρ(k+k′)/2(k − k′)〉ei[(k−k′)·x+

p︷ ︸︸ ︷
1
2 (k+k′) ·a]

= eiQ·x 1

N

∑
p

〈ρp(Q)〉eip·a + (Q ↔ −Q) (45)

where we assumed 〈ρk(q)〉 = δk,Q〈ρk(Q)〉 + (Q ↔ −Q). The current along a given bond is
therefore

j (x + a/2, x − a/2) = eiQ·x et

Nh̄

∑
k

〈ρk(Q)〉2 sin(k · a) + (H.c.). (46)

Averaging the currents anti-clockwise around a plaquette centred at X, we arrive at

IC(X) = IC exp[iQ · X] + H.c. (47)

where

IC(X) = i
et

Nh̄

∑
k

〈ρk(Q)〉[sx sin(Qya/2)− sy sin(Qx a/2)

= et

Nh̄

∑
k

〈ρk(Q)〉[α+γ
4
k + α−γ 3

k ], (48)

where we have used the notation sx,y ≡ sin(kx,ya) and

α± = 1
2

[
sin(Qya/2)± sin(Qx a/2)

]

(notice the ordering of the y and x terms). The form factor for orbital current order is thus a
weighted mixture of γ 4

k and γ 3
k . Using equation (36) to simplify equation (48), we obtain a

relation between the orbital current and gap,

I = e�C

h̄

t

J1
. (49)

where

�C = α+�
4 + α−�3.

In actual fact, the relative weight of the two channels in the orbital antiferromagnet is not an
adjustable parameter. If we calculate the divergence of the current at a given node in the lattice,
we find that

∇ · j(r) = j (r + ax̂, r)− j (r − ax̂, r) + j (r + aŷ, r)− j (r + aŷ, r)

= 4et

h̄ J1

(
α+�

3 − α−�4) = 0 (50)
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so the choice of Q vector determines the mix of γ 3 and γ 4 symmetry in the orbital
antiferromagnet.

In an itinerant model the condition for instability into the hidden order phase will be given
by the Stoner criterion already discussed (J1χ0ψ = 1) where χ0ψ ∼ 1

t so that typically at the
transition I = βe�

h̄ where β ∼ O(1) is a constant; this is the relation we used for the current in
our earlier phenomenological treatment. The form factor γ 2

k = cos(kx)− cos(ky) corresponds
to a quadrupolar charge-density wave (q-CDW). The particular details of the conduction
electron spectrum εk determine which order parameter has a higher critical temperature. For
instance, if (Qx , Qy) = (π, π), and εk = −t (cos(kx) + cos(ky)), which corresponds to a
nested Fermi surface, then from equation (41) the relation for T0 is

1 = J1

8π2t

∫ π

−π
dky

∫ π−|ky |

−π+|ky |
dkx |γ i

k|2
tanh

(
Ek

2T i
0

)

Ek
. (51)

Here we used Ek(� = 0) ≡ εk+Q/2 = t (sin(kx) + sin(ky)). In this particular limit, we
can explicitly verify that orbital antiferromagnetism has a higher T0 than a q-CDW. In the
real material, the spectrum may differ greatly from this simple form, which may result in a
preference of q-CDW over OAFM.

Our discussion in this section is based on a weak-coupling treatment of orbital
antiferromagnetism, which is technically only valid in the vicinity of a nesting instability.
Real heavy electron systems involve interactions of a size comparable with the bandwidth,
in which the vicinity to nesting will no longer be a requirement. Practical modelling of
these situations will require alternate strong-coupling methods, such as methods based on a
Kondo lattice model. It is however interesting to note that both symmetry and microscopic toy
treatments appear to point to quadrupolar charge-density wave and orbital antiferromagnetism
as the leading contenders for hidden order in URu2Si2.

5. Fluctuations and nesting

The sharpness of the phase transition in URu2Si2 indicates that fluctuations do not make
a significant contribution to thermodynamic properties. From the observed specific heat
anomaly, the region of fluctuations is certainly smaller than �T ∼ 0.1 K, so that tg =
�T/T0 < 1

200 . This is an unusual situation in the general context of local moment
magnetism, where broad fluctuation regions are generally seen in the specific heat anomaly.
This result is sometimes taken to indicate that the hidden order involves a nested Fermi
surface [55, 58]. However, band-structure calculations have not revealed any signs of a nested
Fermi surface [59], and it is difficult to see how such a condition might occur naturally in the
complex band structure of an f-electron system. Sharp mean-field transitions are generally
taken as an indication of a large coherence length scale associated with fluctuations. In
insulating systems (e.g. ferroelectrics) this arises from the long-range nature of the interaction.
In superconductors and in nested charge-density wave systems, the long coherence length
ξ0 = vF/� is a consequence of the non-local order parameter response of the itinerant
electron fluid.

So can the sharpness of the specific heat transition in URu2Si2 be used to infer the presence
of nesting in URu2Si2? In fact, as we shall now see, a careful examination of the Ginzburg
criterion for this system shows that while we may confirm that the ordering is itinerant in
nature, the small size of the heavy electron Fermi energy means that we do not need to invoke
nesting to understand that sharpness of the transition.
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The Ginzburg criterion for a phase transition is given by

tG = 1

[(ξ0/a)d(δS/kB)]2/(4−d)
, (52)

or in three dimensions,

tG = 1

(ξ0/a)6(δS/kB)2
, (d = 3). (53)

Here a is the lattice spacing, δS is the entropy associated with the phase transition and ξ0 is the
coherence length of the order parameter. Microscopically, ξ0 is determined from the Gaussian
fluctuation term in the order-parameter expansion of the free energy,

�F ∼ 1
2

∫

q
α|�q|2(t + q2ξ2

0 ) (54)

where t = T
T0

− 1 and α is a normalization constant. The Gaussian coefficient in the integral
is directly related to the static susceptibility of the order parameter

χ−1
ψ (q) = α(t + q2χ2

0 ). (55)

The relationship between the coherence lengthχ0 and microscopic quantities depends markedly
on the underlying physics. In insulators, ξ0 tends to be determined by the range of interaction of
the order parameter, but in itinerant systems, it is determined by the non-local order-parameter
polarization that develops in the electron fluid.

For example, in a local-moment antiferromagnet, with interaction H = 1
2

∑
q Sq S−q ,

χ−1
q = µ−2

B (T + Jq). (56)

When we expand around the unstable q vector, q = Q0,

J (q) = θC(1 − κ−2(q − Q0)
2) (57)

where θC = −T0 is the Curie constant and κ−1 the effective range of the interaction. With this
form, we see that, for insulating systems, the coherence length ξ0 = κ−1 becomes the range
of the interaction. For short-range interactions, this reason, the breadth of fluctuation region
is generally large. In insulating systems, narrow fluctuation regimes are therefore associated
with long-range interactions.

By contrast, in itinerant electron systems the order-parameter susceptibility generally takes
the form

χ−1
ψ (q) = −g + [χ0ψ(q)]−1 (58)

where g is the strength of short-range interaction between electrons in the channel
corresponding to the order parameter and χ0ψ takes the form given in (42). It is the momentum
dependence ofχ0(q) that determines the Ginzburg criterion in itinerant systems. To understand
the role of nesting, let us consider a Fermi surface in which the departure from dispersion is
measured by an energy scale µ (e.g. εk = −2t (cos kx + cos ky) − µ); then the dispersion
satisfies

−εk−Q = εk + 2µ (59)

so that the bare susceptibility (42) is given by

χ0ψ(q) =
RBZ∑

k

|γ �k−Q/2|2
f (εk−)− f (εk+)

εk+q/2 − εk−q/2 + 2µ
. (60)
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For µ = 0 and q = 0, this integral is logarithmically divergent at T = 0, and is given by
χ0ψ(q = 0) ∼ ρ ¯|ψ� |2 ln

(
D
T

)
at finite temperatures. Finite q modifies the Fermi functions

in (60), so that

[χ0
ψ(q)] ∼

(
1 − (vFq)2

4

∂2

∂T 2

)
χ0ψ(T )

∼ ρ

(
ln

(
D

T

)
− (vFq)2

T 2

)
(61)

so that

−g + χ−1
0ψ = g

ln(D/T0)

[
t +

(
vFq

T0

)2
]

(62)

and the free energy expansion takes the form

�F ∼
∫

q
|�q|2

((
δT

T0

)
+

(
vFq

T0

)2
)2

(63)

so by comparing with (54), we see that for a nested system, the coherence length takes the
‘BCS’ form

ξ0 ∼ vF

T0
. (64)

When |µ| � T0, then we must replace T0 → |µ| in the Landau–Ginzburg expansion, i.e.

�F ∼
∫

q
|�q|2

((
δT

|µ|
)

+

(
vFq

µ

)2
)2

=
(

T0

|µ|
)∫

q
|�q|2

((
δT

T0

)
+

(
vFq

|µ|T0

)2
)2

(65)

from which we see that the coherence length is given by

ξ0 ∼ vF√
T0|µ| ∼ √ξnesteda (66)

where we have replaced vF
|µ| ∼ a, so loosely speaking, the absence of nesting replaces the

coherence length by the geometric mean of the BCS coherence length vF/T0 and the lattice
spacing.

Let us now return to our case, URu2Si2. Here, using the three-dimensional form of the
Ginzburg criterion, and taking URu2Si2, δS ∼ 0.1kB, so that

tG ∼ 100

2(ξ0/a)6
. (67)

Suppose the fluctuation region is less than 0.1 K, i.e. tG < (0.1 K/20 K) ∼ 1/200, then a
lower bound for the coherence length is

ξ0/a ∼ (tG/100)−
1
6 = (2 × 104)1/6 ∼ 5.

Clearly, the presence of the sixth power in the Ginzburg criterion means that only modest
coherence length is required to account for experiments. Were the hidden order strictly
associated with the local moments, then we would expect ξ0/a ∼ 1, and clearly, the absence
of fluctuations is sufficient to rule this case out. The high-pressure magnetic phase transition
does in fact show clear signs of Ising fluctuations, and in this region, it would appear that the
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ordering transition is indeed local in nature. However, we can account for the coherence length
of the hidden order transition by appealing to itinerancy, without nesting. By assuming that
vF/� ∼ εF

�
a ≈ 25a. Taking εF ∼ 103 K, consistent with the heavy mass m∗/me ∼ 60 and

� ∼ 102 K, we are clearly in the right range. From these arguments, we see that a correlation
length of order five lattice spacings is fully consistent with a system that is un-nested but
itinerant. We conclude that the sharpness of the hidden order phase transition in URu2Si2
only implies itinerancy. Indeed, there are a number of heavy electron systems with sharp
thermodynamic transitions and commensurate magnetic order, indicative of un-nested Fermi
surfaces, such as U2Zn17 [60] and UPd2Al3 [61]. In each of these cases, it is most likely the
itinerancy alone that is responsible for the narrow fluctuation regime.

6. Discussion

The observed Fermi-liquid behaviour for T > T0, the sharp nature of the transition and the
large entropy loss point to the hidden order as a general density-wave with itinerant excitations
formed from the local spin and orbital degrees of freedom of the uranium ions and f-electrons.
Motivated by nuclear magnetic resonance measurements, we have expanded on our proposal
(with Mydosh) of the hidden order as incommensurate orbital antiferromagnetism and have
provided technical details for our predictions for elastic neutron scattering. Next we have
turned to a microscopic description of the hidden order. After discussing symmetries and
allowed particle–hole pairings in general terms, we studied the developing of these ordering
in the setting of a toy single-band t–J model within a weak-coupling approach. Within this
framework, selection between q-CDW and OAFM ordering is not possible, though the situation
may be different in the (experimentally relevant) strong-coupling regime. As discussed in
section 3.2, density wave instabilities such as q-CDW and OAFM can account for the large
entropy loss observed at the transition (δS ≈ k2

BT0 N∗(0)) if the density of states at the Fermi
surface, N∗(0), is large (as is the case in a heavy Fermi liquid), and there is a substantial
gapping of the Fermi surface.

The weak-coupling model we considered requires the nesting of a significant part of
the Fermi surface. This requirement can be relaxed if the coupling is strong. Indeed it
seems that a strong coupling description might be more appropriate for URu2Si2, since the
transition temperature T0 is an order of magnitude smaller than the gap �, unlike a weak
coupling description where T0 is more comparable with �. Unfortunately here it is difficult
to perform controlled calculations in this regime, and thus experiment is crucial for discerning
between these two competing scenarios of quadrupolar charge-density wave order and orbital
antiferromagnetism. In section 2 we studied the consequences of OAFM for the neutron
scattering structure factor S(q) and NMR at the Si and Ru sites. No particular microscopic
model was assumed here, so the analysis is applicable for any coupling. NMR observations
were used with our OAFM model to predict an incommensurate wavevector for orbital ordering
which may be verified by neutron scattering measurements. To date, these predictions remain
untested, as current experimental resolution is insufficient to observe the anticipated signal
level from an OAFM [48, 49]. Here we identify a region of momentum space where elastic
neutron scattering probes will clearly be able to distinguish between a spin-density wave and
an OAFM with current signal-to-noise levels. This prediction for orbital anferromagnetism
remains a challenge for future experiments.

Our proposal of orbital antiferromagnetism is strongly motivated by the inhomogeneous
line-broadening observed in ambient pressure NMR [44], and there are questions associated
with this experiment that concern us greatly. In particular, the local fields measured via NMR
in epoxied powdered samples are an order of magnitude larger than those probed by muon spin
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resonance or nuclear magnetic resonance in single-crystal ones. One interesting possibility
is ‘motional narrowing’. The proposed orbital antiferromagnetic order is incommensurate
and quite similar in its current patterns to a flux lattice of core-less vortices, where the
absence of vortex cores weakens the pinning effect of disorder. In single-domain crystals
an incommensurate orbital antiferromagnet should then be weakly pinned, giving rise to large
thermal motion [62]. The probed local fields will then be ‘motionally narrowed’, i.e. their time-
average will be significantly reduced in magnitude relative to their static counterpart. One of
the predictions of this scenario is that the muon or NMR linewidth will increase systematically
with disorder—an effect that might be tested using radiation damage to systematically tune
the disorder in a single sample.

Since we started working on this project, there have been a number of new experiments
which may place further constraints on the nature of the hidden order in URu2Si2. In particular,
recent magnetotransport measurements [63] indicate an unusually large Nernst signal in
URu2Si2 that develops at T = T0. This kind of behaviour has also been seen in the pseudogap
phase of underdoped cuprate superconductors. In the case of the cuprate superconductors,
this is most likely an effect of the Magnus force on the pre-formed pairs in the pseudogap.
However, the absence of any superconductivity makes it far more likely that the giant Nernst
effect seen here is a property of the quasiparticles in the presence of the hidden order parameter.
These new results clearly place an important constraint on the microscopic nature of the order
parameter.

Recent high magnetic field studies [64] have raised additional questions about the hidden
order in URu2Si2. Application of high magnetic fields confirms that the hidden order persists
to significantly higher values than does the remnant antiferromagnetism, affirming the two-
phase scenario [10]. Moreover, the application of still higher fields leads to a profusion of new
hidden order phases that may well cloak a field-induced quantum critical point. At the current
time, it is not yet clear whether the proposed quantum critical point is a consequence of the
loss of hidden order, or whether it might arise from the close vicinity to a quantum critical end
point (as is the case [65] with SrRu2O4).

The hidden order mystery in uranium ruthenium-2 silicon-2 can be regarded as part
of a much broader set of long-standing problems that our community faces in the context
of highly correlated materials. Coexisting forms of hidden order, novel metallic states
manifested by unusual resistance and magnetotransport properties, and field-induced quantum
phase transitions, each present in URu2Si2, manifest themselves in a wide range of other
strongly correlated materials, such as the cuprate superconductors, strontium ruthenate,
magnetoresistance materials, and many other heavy electron systems. URu2Si2 offers an
alternative perspective on these problems, and optimistically, its ultimate solution will provide
part of the key to understanding these broader questions.
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Appendix. Spatial distribution of vector potential due to OAFM

Here we calculate the vector potential A(x) due to orbital order by summing up contributions
from currents in all links. Consider first the contribution A12 defined in equation (8) for links
along 〈12〉. Performing the integral over w gives

A12(x) = x̂
I0

c

∑
j

e−iQ·X j

[
sinh−1

(
a/2 + X j − x√

(y − Y j + a/2)2 + (z − Z j)2

)

− sinh−1

( −a/2 + X j − x√
(y − Y j + a/2)2 + (z − Z j)2

)]
, (A.1)

where we have used the notation X j = (X j ,Y j , Z j ) to denote the coordinates of the centre of
the plaquette. For the link 〈43〉 shown in figure 4 we have

A43(x) = −x̂
I0

c

∑
j

e−iQ·X j

[
sinh−1

(
a/2 + X j − x√

(y − Y j − a/2)2 + (z − Z j )2

)

− sinh−1
( −a/2 + X j − x√

(y − Y j − a/2)2 + (z − Z j )2

)]
. (A.2)

The x component of the vector potential is then Ax(x) = A12(x)+ A43(x). Similarly the vector
potential in the links 〈14〉 and 〈23〉,
A14(x) = −ŷ

I0

c

∑
j

e−iQ·X j

[
sinh−1

(
a/2 + Y j − y√

(x − X j + a/2)2 + (z − Z j)2

)

− sinh−1

( −a/2 + Y j − y√
(x − X j + a/2)2 + (z − Zz)2

)]
, (A.3)

A23(x) = ŷ
I0

c

∑
j

e−iQ·X j

[
sinh−1

(
a/2 + Y j − y√

(x − X j − a/2)2 + (z − Z j)2

)

− sinh−1

( −a/2 + X j y − y√
(x − X j − a/2)2 + (z − Z j)2

)]
, (A.4)

yield the y component of the vector potential Ay(x) = A14(x) + A23(x). The magnetic field
follows straightforwardly from B = ∇ × A.
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